返回首页
文学网 > 短文 > 教学教案 > 正文

初中数学教学反思

2026/02/12教学教案

文学网整理的初中数学教学反思(精选6篇),供大家参考,希望能给您提供帮助。

初中数学教学反思 篇1

一、数学教学不能只凭经验

从经验中学习是每一个人天天都在做并且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依靠经验教学实际上只是将教学实际当作一个操作性活动,即依靠已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和必须的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。

这样从事教学活动,我们可称之为“经验型”的,认为自我的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、这会社会阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。

二、理智型的教学需要反思

理智型教学的一个根本特点是“职业化”。它是一种理性的以职业道德、职业知识作为教学活动的基本出发点,努力追求教学实践的合理性。从经验型教学走向理智型教学的.关键步骤就是“教学反思”。

对一名数学教师而言教学反思能够从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。

1.对数学概念的反思――学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅仅要能“做”,还应当能够教会别人去“做”,所以教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。

简言之,教师应对数学概念,应当学会数学的思考――为学生准备数学,即了解数学的产生、发展与构成的过程;在新的情境中使用不一样的方式解释概念。

2.对学数学的反思

当学生走进数学课堂时,他们的头脑并不是一张白纸――对数学有着自我的认识和感受。教师不能把他们看着“空的容器”,按照自我的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

3.对教数学的反思

教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?

我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了必须的启发,但反思后发现,自我的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。

初中数学教学反思 篇2

从多年的教学经验中总结出,能够让学生养成及时反思,对数学教学成绩的提高有着举足轻重的意义。学生把整个数学课的学习过程,得到的经验,反思的点点滴滴形成一种习惯,是巩固学习效果,提高学习能力最为有效的方法之一。数学习题的练习是学生学好数学的必然途径,经过练习积累点滴的反思,又有反作用于学生本身,激发他们的思维领域,形成一种指导的思想。经过长期的训练,学生的思维会变得广阔,解题的思路宽广,验证性强,准确率高,并能提高判断能力。学生可以借助反思所积累的平台,平稳的提高数学成绩,提高自身的水平。实践证明经常反思会在学生的思维领域形成一个结构清晰的框架,在解题的过程中,不会产生肓目性,久之会提高学生的.思维敏捷性,并在头脑中留下深刻的印象,形成自己的知识基础,从而使解题逻辑性强,独立解题的能力得到极大的提高。

学生作业后认真反思,反馈回来的信息会给教师提供一个教学环节上的重要素材。这样在今后的相关章节教学中,会注重这些因素的影响,不但可以减少学生的负担,而且能够顺理成章的理清学生头脑中的困惑。

逻辑性的思维不是教师能够传授的,是需要学生经过自身的努力在学习过程中积累形成,一部分学生作业困难,不求深解,更不用说积极反思了,这样长期会形成无法释放的重负,数学成绩低,逻辑思维空洞,所以在实践中培养学生的反思是一件积极有效可行的教学措施。

初中数学教学反思 篇3

初中数学教学反思(热)

身为一名到岗不久的老师,我们的任务之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,来参考自己需要的教学反思吧!以下是小编帮大家整理的初中数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学教学反思 篇4

学生现在年龄还小根本不知该怎样学习,更不知怎样进行反思,那就需要我们老师进行指导。那么在当前课改实验中,如何真实培养学生的反思习惯和能力,是教师教学反思的核心,也是我应该重点反思的地方。

以我自己这阶段的教学经历和以前的学习经历,有以下的感受:

1、要求做好课堂简要摘记。

当前,老师讲学生听已成了教学中最普遍的方法。而要学生对教学的内容进行反思,听是远远不够的。要反思,就要有内容。所以学生就要先进行课堂简要摘记。课堂简要摘记给学生提供了反思的依据。学生也能从课堂简要摘记中更好的体验课堂所学习的内容,学生的学习活动也成了有目标,有策略的主体行为,可促使老师和学生进行探索性,研究性的活动。有利于学生在学习活动中获得个人体验,提高个人的创造力,所以课堂简要摘记是学生进行反思的重要环节。

这一点我就尝试过,刚开始我没有让学生做课堂简要摘记。当过几天之后,有些同学把学过的知识忘记了,让他们翻课堂简要摘记时他们却什么也没有。而另外一些做了笔记的学生却掌握的较好,我才感觉到要求学生做笔记的重要性。学生现在年龄太小还没有学习的主动性,需要老师来引导。所以就要求他们开始做课堂简要摘记,刚开始并且天天检查。一星期过后,效果就出来。

2、指导学生掌握反思的方法。

课堂教学是开展反思性学习的主渠道。在课堂教学中有意识的引导学生从多方位、多角度进行反思性的学习。学生的实践反思,可以是对自身的认识进行反思,如,对日常生活中的事物及课堂中的内容,都可引导学生多问一些为什么?;也可以是联系他人的'实践,引发对自己的行为的比较反省,我们可以多引导学生进行同类比较,达到“会当凌绝顶,一览众山小”的境界;也可以是对生活中的一种现象,或是周围的一种思潮的分析评价,此外学生的反思还何以是阶段性的,如:一节课尾声时,让学生进行一下反思,想想自己这节课都有什么收获?还有哪些疑问?当天睡前,反思一下今天自己的感受;或是一周反思一下自己的进步和不足等等。

3、从课后学习情况的反思及作业情况的自我反思中加强反思能力的培养。

一节课下来,静心沉思,抽些时间回顾所学的内容,摸索知识之间的一些规律 和自己在知识点上有什么发现; 解题的诸多误区有无突破;启迪是否得当;训练是否到位等等。及时记下这些得失,并进行必要的归类与取舍。在作业中也要认真反思,尤其是在批改之后的作业,并要求学生仔细分析自己的对题和错题,写下自己的成功之处和不足之处,还可以写下自己的新思路和自己的创新。

4、帮助学生提高反思效果。

经常引导在学生反思时,如每次只是这样简单地做一做,学生很快就会有厌烦情绪,这就需要我们在每次引导学生这样做的时候,给与其大量的鼓励、启示和评价,让学生体会到自己这样做的好处,使他们在这样做的过程中,得到激励和启示,并在后面的学习中获得成功。如:在平时,每次引导学生反思时,我都会大力表扬那些思考认真的同学,对一些同学能在反思的基础上提出问题的,就引导大家都向他学习。我经常对学生说:只要是能在反思的情况下比以往有所进步,这就是最大的成功,那么这个学生就是一个勇士了,因为他已能战胜困难,获得胜利了。让孩子们感到自己在不断地反思后,能够不断地成功,能够经常地、认真地反思,那么学生就会在反思中真正领悟生活和学习的思想、方法,优化自己的认知结构,发展思维能力,培养创新意识。

现在老师都很累,每天很努力的去教学生。但如果不引导学生怎样去学、怎样进行学习反思,那么老师的心血就有可能白费。只有老师努力的教和学生正确的学二者相结合,老师的付出才一定有回报。

以上只是我个人在这阶段的一点感受。在以后的工作中我还会努力地去引导每一位学生寻找一种适合自己的学习方法和怎样的进行有效的学习反思。

初中数学教学反思 篇5

1.自我经历

在教学中,我们常常把自己学习数学的经历作为选择教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们今天的学生仍有一定的启迪。

当然,我们已有的数学学习经历还不够给自己提供更多、更有价值、可用作反思的素材,那么我们可以“重新做一次学生”以学习者的身份从事一些探索性的活动,并有意识的对活动过程的有关行为做出反思。

2.学生角度

教学行为的本质在于使学生受益,教得好是为了促进学得好。

在新课程实验中,学习分段函数时,让学生去了解出租汽车的出租费用、或家长工资中的扣税标准,并写出调查报告。

在讲习题时,当我们向学生介绍一些精巧奇妙的解法时,特别是一些奇思妙解时,学生表面上听懂了,但当他自己解题时却茫然失措。

我们教师在备课时把要讲的问题设计的十分精巧,连板书都设计好了,表面上看天衣无缝,其实,任何人都会遭遇失败,教师把自己思维过程中失败的部分隐瞒了,最有意义,最有启发的东西抽掉了,学生除了赞叹我们教师的高超的解题能力以外,又有什么收获呢?所以贝尔纳说“构成我们学习上最大障碍的是已知的东西,而不是未知的东西”。

3.与同事交流

● 同事之间长期相处,彼此之间形成了可以讨论教学问题的共同语言、沟通方式和宽松氛围,便于展开有意义的讨论。

● 由于所处的教学环境相似、所面对的教学对象知识和能力水平相近,因此容易找到共同关注的教学问题展开对彼此都有成效的交流。

● 交流的方式很多,比如:共同设计教学活动、相互听课、做课后分析等等。交流的话题包括:

我觉得这堂课比较成功的地方是……,我觉得这堂课比较糟糕的地方是……;

这个地方的处理不知道怎么样?如果是你会怎么处理?

我本想在这里“放一放”学生,但怕收不回来,你觉得该怎么做?

我最怕遇到这种“意外”情况,但今天感觉处理得还可以,你觉得怎样?

4.文献资料

学习相关的数学教育理论,我们能够对许多实践中感到疑惑的现象作出解释;能够对存在与现象背后的问题有比较清楚的'认识;能够更加理智的看待自己和他人教学经验;能够更大限度的做出有效的教学决策。阅读数学教学理论可以开阔我们教学反思行为的思路,不在总是局限在经验的小天地,我们能够看到自己的教学实践行为有哪些与特定的教学情境有关、哪些更带有普遍的意义,从而对这些行为有较为客观的评价。能够使我们更加理性的从事教学反思活动并对反思得到的结论更加有信心。

更为重要的是,阅读教学理论,可以使我们理智的看待自己教学活动中“熟悉的”、“习惯性”的行为,能够从更深刻的层面反思题目进而使自己的专业发展走上良性发展的轨道。

教师的职业需要专门化,教师的专业发展是不可或缺的,它的最为便利而又十分有效的途径是教学反思。没有反思,专业能力不可能有实质性的提高,而教学反思的对象和机会就在每一个教师的身边。

初中数学教学反思 篇6

本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。

一、将数学教学内容的学术形态转化为学生易于接受的教育形态

[案例1]弧度制的教学

在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。

1、创设故事情境

一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位——弧度。如此引入很.自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。

2、探索角新的度量方法

可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样?为了探索这个问题,把学生分成若干小组,思考下列问题:

① 1度的角是如何规定的?

②用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?

③用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?

④如何定义圆心角的'大小?说明这种度量的好处。

要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。

这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

二、由重结果走向重过程

新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识的形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。

[案例2]等比数列的前n项和公式的探求。

为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。

已知等比数列{ an}的公比为q,求这个数列的前n项和Sn。即Sn=a1+a2+a3+、+an 。

(1)知识回顾。

类比学过的等差数列的前n项和公式,不难想到等比数列前n项和Sn也希望能用a1、an,n或q来表示。

请同学们回答:对于等比数列,我们已经掌握了哪些知识?

①等比数的定义,用式子表示为:

②还可以用一系列整式表示:

a2=a1q

a3=a2q

a4=a3q

an =an-1q

③等比数列的通项公式:n=1.n-1 (n≥2). aaq

(2)新知探求

联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?

(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)

要用a1、n、q来表示Sn=a1+a2+a3+、+an应先将a2,a3,···,an用a1、n、q来表示。

即:Sn=a1+a1q+a1q+、+a1qn-1

注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对Sn化简求和?

(经过一番思考)对Sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程.

方法一:用“错位相减法”推导

方法二:用“迭加法”推导

方法三:用“等比定理法”推导

这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。