《体积单位》教案
文学网整理的《体积单位》教案(精选6篇),供大家参考,希望能给您提供帮助。
《体积单位》教案 篇1
教学内容:
教科书第38~39页“体积和体积单位”。
教学目标:
1、使学生理解体积的概念,了解常用的体积单位:立方米、立方分米、立方厘米,对体积单位的大小形成比较明确的表象。
2、能正确区别长度单位、面积单位和体积单位的不同。
2.使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
3.培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。
教学重点:
1、建立体积概念。
2、认识体积单位。
教学难点:
建立体积概念。
教学用具:
课件、1立方厘米、1立方分米的教具、1立方米的模型框架、一次性塑料杯、沙子、水、石块、木块、铁球、汽球。
教学过程:
一、故事引入,激发兴趣
同学们,大家还记得乌鸦喝水的故事吗?谁愿意看图给大家讲一讲。
问:乌鸦是怎么喝到水的?为什么把石子放时瓶子里,瓶子里的水就升上来了。
二、动手实验,引出概念
师:究竟是因为石块有重量,还是因为石块占了空间?咱们通过实验来看一看。
实验一:
出示有水的玻璃杯,在水面处做记号。在水杯中放入一块石头,在水面处做一个黄色记号。拿出石块后,再放入大一些的石块,在水面处做一个红色记号。
观察:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象?说明什么?
师小结:水杯中放入石块后,石块占据了空间,把水面向上挤。水面向上升,石块占据空间大,水面上升得高;石块小占据的空间小,水面上升得低。
实验二:
拿出装满细沙的石子,把细沙倒在一边,把一木块放入杯子里,再把倒出的沙装回杯子里,把杯子的沙倒出,把一些大的木块放入杯子里,再把倒出的沙装回杯子里。
观察思考:出现了什么结果?这说明什么?
师小结:放入小木块,外边剩的沙少;放入大木块,外边剩的沙多。这说明木块也占据杯子的空间。木块大占据空间大,木块小占据的空间小。
师:刚才同学们通过观察实验现象,通过分析思考发现石块、木块都占空间。在我们的生活中,有没有哪些现象也能说明物体占空间呢?
(学生演示吹气使塑料袋膨胀……)
最后师生共同概括出“体积”的含义。[板书]体所占空间的大小叫做物体的体积。
谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?它们谁的体积大?谁的体积小?
三、解决问题,引出单位
1、出示教材39页上的两个长方体,请学生比较。
刚才的电视机、影碟机、手机,大家可以直接通过观察得出它们的大小。对于这两个长方体,你们能比较出它们的大小吗?
看来大家的意见各不相同。为什么前面几件物品你们一下子就能确定,而现在争来争去却不能确定呢?
也就是说需要有一个统一的标准!就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。我们学过长度单位用线段表示,面积单位用正方形来表示,你们猜想一下,体积单位应该用什么图形来表示呢?
对!体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)请你们猜一猜1cm3、1dm3,是多大的正方体?
学生讨论后回答:我们想棱长是1cm的正方体,体积是1cm3;棱长是1dm的`正方体,体积是1dm3。
师:这个猜想对吗?看看书上是怎样说的。
学生看书,证实自己的猜想是对的。
师:请同学们在自己的学具中找出1cm3的正方体。
学生找到后,说一说自己是怎样找到的。
2、请你们找找生活中哪些物体的体积大约是1cm3。
请找出1dm3的正方体,与1cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1dm3吗?
1m3有多大?
你能想像出1m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1m3有多大,它和你想像的大小一样吗?
3、大家估计一下,它大约能容纳几个同学?验证
哪些物体计算体积时使用立方米比较恰当?
教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。
4、p40做一做第1题。
师:我们知道了常用的体积单位,计量一个物体的体积,就要看这个物体含有多少个体积单位。
5、p40做一做第2题。说出它们的体积各是多少立方厘米。
四、巩固练习,形成能力
1、选择合适的体积单位填空。
一块橡皮的体积约是8( )
一台录音机的体积约是12( )
运货集装箱的体积约是40()
电冰箱的体积约是0.27()
数学课本的体积约是200()
2、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()
3、摆一摆:用小正方体拼一个体积是8立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?
小结:同一个体积数,可以摆出不同的形状。
五、情感体验,本课小结
常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?
体积单位的用途是什么?
板书设计:
体积
物体所占空间的大小叫做物体的体积。
长度单位:厘米、分米、米
面积单位:平方厘米、平方分米、平方米
体积单位:立方厘米、立方分米、立方米
《体积单位》教案 篇2
设计说明
体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:
1.重视学生的自主猜测、主动探究。
在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。
2.重视转化、推算等方法。
为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。
课前准备
教师准备 PPT课件、长方体纸盒
学生准备 小正方体木块
教学过程
⊙复习导入
1.提出问题。
(1)回忆:常用的长度单位有哪些?常用的相邻两个长度单位之间的进率是多少?(米、分米、厘米 10)
(2)回忆:常用的面积单位有哪些?常用的相邻两个面积单位之间的进率是多少?(平方米、平方分米、平方厘米 100)
(3)提问:我们认识的体积单位有哪些?(立方米、立方分米、立方厘米)
2.设疑引入。
你能猜出常用的相邻两个体积单位间的进率是多少吗?
设计意图:引导学生回忆和整理已有知识,并提出问题——你能猜出常用的相邻两个体积单位间的进率是多少吗,激发学生的求知欲和好奇心,为学习新知做好铺垫。
⊙自主探索,验证猜测
1.再现问题。
大胆猜测一下,常用的相邻两个体积单位间的进率可能是多少?
(学生猜测进率可能是1000)
2.探究验证。
师:常用的相邻两个体积单位间的进率是不是1000呢?需要我们进行验证。下面请各小组合作探究“1分米3=1000厘米3”。
(1)学生6人一组进行探究。
(要求:①各组长拿出体积为1分米3的小正方体,各位同学拿出体积为1厘米3的小正方体。②先讨论探究的方法,再共同找出答案)
(2)全班交流。
预设
①操作验证——摆:我们发现1分米3=1000厘米3。我们把10个体积为1厘米3的'小正方体摆成一排,摆10排正好是一层,这一层小正方体的体积和就是100厘米3。摆这样的10层就得到一个体积为1分米3的大正方体。这个大正方体的体积就是10个100厘米3,也就是1000厘米3。
(学生汇报后,用课件展示摆的过程)
②操作验证——切:我们组的想法是把体积为1分米3的大正方体切成若干块体积为1厘米3的小正方体。我们比了比,沿着大正方体的长、宽、高各可以切成10块,10×10×10=1000(块),所以1分米3=1000厘米3。
③推理验证——算:我们小组是算出来的。把体积为1分米3的正方体的棱长用厘米作单位,棱长就是10厘米,根据正方体的体积计算公式,10×10×10=1000(厘米3),所以1分米3=1000厘米3。
④利用知识间的联系进行验证——想:1分米3=1升,1厘米3=1毫升,而1升=1000毫升,所以1分米3=1000厘米3。
(3)教师小结:大家已经验证了1分米3=1000厘米3。想一想,用同样的方法,你能推算出1米3等于多少立方分米吗?
学生独立思考,并全班交流,然后教师指名说一说推导过程。
[板书:1米3=(1000)分米3]
师:你能说一说,常用的相邻两个体积单位间的进率是多少吗?
小结:常用的相邻两个体积单位间的进率是1000。
3.归纳总结。
师:同学们通过摆、切、算等方法验证了1分米3=1000厘米3,1米3=1000分米3,共同验证了“常用的相邻两个体积单位间的进率是1000”这个猜想。
(板书:1分米3=1000厘米3,1米3=1000分米3)
你还能联想到什么?(液体的体积单位:1升=1000毫升,1L=1dm3)
《体积单位》教案 篇3
教学目标
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点
体积单位进率和单位之间的互化。
教学难点
复名数和单名数之间的转化。
教学过程
一、复习准备。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?
板书:长度单位
1米=10分米
1分米=10厘米
厘米
(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?
板书:面积单位
1平方米=100平方分米
1平方分米=100平方厘米
平方厘米
2、口答填空,并说明算法和算理。
(1)4米=( )分米=( )厘米
算法:进率×高级单位的数
(2)500厘米=( )分米=( )米
算法:低级单位的数÷进率
3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的'体积单位间的进率和单位之间的转化。(板书课题:体积单位间的进率)
二、学习新课。
(一)认识体积单位间的进率
1、认识立方分米和立方厘米的关系。
(1)指导学生自学。出示自学提纲:
A、棱长是1分米的正方体的体积是多少?
B、棱长是10厘米的正方体的体积是多少?
C、1立方分米与1000立方厘米哪个大?为什么?
(2)学生分组汇报。教师演示动画“体积单位间的进率1”
因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体。
1分米×1分米×1分米=1(立方分米)
10厘米×10厘米×10厘米=1000(立方厘米)
(3)板书:1立方分米=1000立方厘米
2、推导立方米与立方分米的关系。
(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?
用什么方法可以验证你的想法是否正确呢?
(学生分组讨论,汇报)
(2)(演示动画“体积单位间的进率2”)
棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体。
板书:1立方米=1000立方分米
(3)思考:1立方米等于多少立方厘米呢?
3、小结:相邻的两个体积单位间的进率是1000。
4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?
(名称、进率两方面。)
(二)体积单位的互化。(演示课件“体积单位间的进率”)
1、出示例3:8立方米、0.54立方米各是多少立方分米?
8立方米=( )立方分米
0.54立方米=( )立方分米
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?
想:因为1立方米=1000立方分米,8立方米有8个1000立方分米
列式:1000×8=8000,填8000
(第2题同上理) 1000×0.54=540,填540
2、出示例4:3400立方厘米、96立方厘米各是多少立方分米?
3400立方厘米=( )立方分米
96立方厘米=( )立方分米
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
想:因为1000立方厘米为1立方分米, 3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:3400÷1000=3.4,填3.4
(第2题同上理)96÷1000=0.096填0.096
3、教师:请对比例3,例4,说一说这两道题有什么不同?
板书:
(例3下面)高级单位→低级单位,用进率×高级单位的数。
(例4下面)低级单位→高级单位,用低级单位的数÷进率。
4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)
(三)练习。
1、2立方米80立方分米=( )立方米
提示:哪部分需要转化?没转化的部分如何办?
板书:2+80÷1000=2+0.08=2.08,填2.08
2、5.34立方分米=( )立方分米( )立方厘米
提示:哪部分可以直接填?哪部分需要转化?
板书:1000×0.34=340 填5和340。
3、3.09立方米=( )立方米( )立方分米
老师:从上面三道题的解答中,你们有什么体会?
(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。)
(四)练习解决实际问题。
出示例5:一块长方体钢板长2.2米,宽1.5米,厚0.01米。它的体积是多少立方分米?
方法一:2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
方法二:2.2米=22分米 1.5米=15分米 0.01米=0.1分米
22×15×0.1=33(立方分米)
答:这块钢板的体积是33立方分米。
三、巩固反馈。
1、口答填空,说出计算过程。
0.9立方米=( )立方分米 540立方厘米=( )立方分米
38立方分米=( )立方米 4立方分米50立方厘米=( )立方分米
10.35立方米=( )立方米( )立方分米
2、判断正误,并说明理由。
0.5立方米=500立方厘米( ) 2.6立方分米=2立方米60立方厘米( )
四、课堂总结。
1、体积单位的进率。
2、体积单位的转化方法。
板书:
五、课后作业。
1、4平方米=( )平方分米
4立方米=( )立方分米
2.5平方米=( )平方分米
2.5立方米=( )立方分米
2、0.3立方分米=( )立方厘米
1.08立方米=( )立方分米
4600立方分米=( )立方米
3450立方厘米=( )立方分米
六、板书设计
《体积单位》教案 篇4
一:总体说明:
《体积和体积单位》这节课是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式,来教学体积的意义和体积单位。教师先通过实验的方法帮助学生建立起体积的概念,使学生理解体积的含义,进一步建立空间观念。再让学生通过观察与感知,建立常用的体积单位观念,认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。最后让学生从教学活动中知道要计量一个物体的体积,就是看它含有多少个体积单位。
二:说教材
1、内容:《体积和体积单位》本节课内容,是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。主要内容是教学体积的意义和体积单位,教材先通过实验的方法帮助学生建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,最后教材说明要计量一个物体的体积,就是看它含有多少个体积单位。
2、目标:通过《体积和体积单位》本节课的教学,
(1)让学生知道体积的含义,进一步建立空间观念。
(2)使学生认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念。
(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
3.教学重点:掌握体积和体积单位的知识,培养学生的动手能力。
4.教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。
5.教学准备:烧杯、石块、体积单位、课件。
三:教学策略:
1.采用故事导入法激发学生的学习兴趣。
2.采用实验法和自学法发挥学生的实践能力和自主学习能力。
3.采用小组学习的方法,培养学生的协作能力。
4.采用学生动手操作实验的方法,培养学生的创新能力。
四:教学过程:
(一)导入:
1.听《乌鸦喝水》的小故事。
2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)
(二)探究新知
1、建立“体积”概念。
师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。
师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个烧杯中,你又发现了什么?说明什么?”请生读题,分组操作。
师:通过这个实验,
你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养学生的小组学习、协作能力,锻炼学生的动手操作能力。]
实物演示:橡皮、铅笔盒、书包。
师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?
书包与讲桌相比,谁占的空间比较大?
引导学生得出:物体占空间有“大小:{板书}。
生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}
生齐读。
师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分抽象,学生难以理解。这里的第一个实验,让学生通过观察、思考、认识物体“占有空间”。再通过第二个实验,让学生形成“空间有大小”的鲜明表象,帮助学生理解体积的含义,便于建立“体积”的概念。]
2、教学“体积单位”。
师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]
师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。
请生数一数,告诉老师谁的体积比较大?
学生汇报(注意让学生说出数的方法)。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
请生读一读常用的体积单位有哪些。
出示自学要求,“v自学课文15页内容。
v自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”
请生分小组自学“体积单位”,进行讨论和交流。学生上台汇报自学成果。[说明:教师出示自学提纲,让学生以小组自学的形式开展讨论和交流,并让学生自我展示自学成果,极大地发挥了学生的主体意识和探究学习能力,发展学生的协作能力。]
师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?
今后,我们在计量物体的体积时,就应根据实际情况来选用合适的'体积单位
3.教学“计量体积单位”的方法。
师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?
请生说一说。
师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。
学生操作:
请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]
4.反馈
( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
(课本中练一练的作业)
[说明: 通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
(三):知识的应用。
(四)、课堂总结:
师:学习了这堂课,你有哪些收获?
七、板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积
体积单位:立方厘米:棱长1厘米的正方体体积是1立方厘米。
立方分米:棱长1立方分米正方体体积是1立方分米。
立方米:棱长1立方米正方体体积是1立方米。
《体积单位》教案 篇5
设计说明
本节课是在学生认识了长方体和正方体,空间观念有了进一步发展的基础上进行教学的,在教学设计上有以下特点:
1.创设情境,激发探索欲望。
凡是富有成效的学习,必须对要学习的内容具有浓厚的兴趣,而且能够在学习活动中感到愉悦。要让学生主动学习,激发他们的学习兴趣是关键。因此,本教学设计通过“乌鸦喝水”的故事情境引入,激发学生的学习兴趣,感悟体积的概念,同时借助学生所熟悉的物体,感知物体体积的大小,建立体积单位的表象,让学生在愉悦的情境中掌握新知。
2.在实践中掌握体积的概念和体积单位。
在实践活动中获取知识是《数学课程标准》中倡导的学习方式。本设计首先让学生通过实验的方法建立体积的概念,再通过观察与感知,建立常用的体积单位的表象,在亲身经历和体验中理解体积的概念和体积单位。这样的设计使学生充分参与了学习的过程,便于知识的理解和记忆。
课前准备
教师准备 PPT课件 两个同样大小的玻璃杯 两个大小不同的石头 1 cm3、1 dm3、1 m3的正方体模型
教学过程
⊙创设情境,揭示体积的概念
1.激趣引入。
(1)同学们,你们知道世界上最聪明的鸟是什么吗?(是乌鸦)据动物行为学专家研究,乌鸦是除人类以外具有一流智商的动物,其综合智力大致与家犬的智力水平相当,“乌鸦喝水”的.故事就反映了其思维的巧妙。同学们,你们听过“乌鸦喝水”的故事吗?谁愿意给大家讲一讲?
指名看图讲故事。
(2)乌鸦是怎么喝到水的?
预设
乌鸦把石头放进瓶子里,瓶子里的水就升上来了,这样乌鸦就喝到水了。
(3)为什么把石头放进瓶子里,瓶子里的水就升上来了?
引导学生说出石头占了水的空间,所以把水挤上来了。
设计意图:通过故事引入,激发学生的学习兴趣,初步建立体积概念的表象。
2.实验证明。
教师演示:拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块石头放入另一个杯子,再把第一个杯子里的水倒入第二个杯子里,让学生看会出现什么情况,并提问:为什么会这样?
3.揭示体积。
(1)教师出示两个大小不同的石头,提问:这两个石头所占的空间一样吗?哪个占的空间大些?怎样用实验证明呢?
预设
生:把两个石头浸没在装有同样多的水的杯子中,水面上升多的占的空间大,水面上升少的占的空间小。
师:那你做一个实验给大家看看好吗?
(2)试一试。
找一名学生做实验,其他学生观察,通过实验让学生知道两个石头所占的空间有大有小。
⊙创设矛盾情境,引出体积单位
1.比较两个长方体的大小。
有的物体可以通过观察来比较它们的体积的大小,下面有两个长方体,你们能比较出它们的大小吗?(课件出示两个体积相近的长方体)
学生出现争论。(有的说能,有的说不好比较)
师:到底谁大谁小?为什么?(课件展示将它们分成若干个大小相同的小正方体)
预设
因为左边的长方体被平均分成了16个小正方体,而右边的长方体被平均分成了15个小正方体,而且小正方体的大小相同,所以左边的长方体比右边的长方体大。
师:为什么要分成大小相同的小正方体呢?
(引导学生说出因为分成的每个小正方体的大小相同,这样就好比较了)
2.认识常用的体积单位。
(1)提出自学要求。
师:计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要体积单位。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。请大家阅读教材,说一说常用的体积单位有哪些。
(2)学生阅读后汇报。
①1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?(出示1立方厘米的小正方体让学生观察)你知道了什么?哪些物体的体积比较适合用立方厘米作单位?(1立方厘米约一个手指尖的大小)
②1立方分米有多大?什么样的正方体的体积是1立方分米?(出示1立方分米的正方体,让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?请用手势表示出1立方分米的大小。(1立方分米约一个粉笔盒的大小)
③1立方米有多大?什么样的正方体的体积是1立方米?出示1立方米的正方体框架,让学生看一看,具体感受一下1立方米的正方体大约有多大,举例说说生活中哪些物体的体积大约是1立方米。
(3)再次感悟。
请同学们闭上眼睛,再次感受一下1立方厘米、1立方分米和1立方米的大小,哪个比较大?哪个比较小?
《体积单位》教案 篇6
《体积单位》教案
在教学工作者开展教学活动前,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?以下是小编为大家收集的《体积单位》教案,仅供参考,欢迎大家阅读。
返回首页