返回首页
文学网 > 短文 > 教学教案 > 正文

数轴教学设计

2025/09/16教学教案

文学网整理的数轴教学设计(精选7篇),供大家参考,希望能给您提供帮助。

数轴教学设计 篇1

学习目标

1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

2.了解数形结合的数学思想。

3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

重点是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

难点数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

教学过程

一、自主学习(一)、自学课文(二)、导学练习

1.有理数包括哪些数?0是正数还是负数?

2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

3.思考:

①零上25℃用正数()表示。0℃用数()表示;零下10℃用负数()表示。

②什么叫数轴?数轴要具备哪三个要素?

③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

④表示+2的点在什么位置?表示-3的点在什么位置?

⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

4.数轴的画法,有哪几个步骤?

5.我们还可以更简便的得出数轴的定义:规定了 、 和 的直线叫做数轴。

、 和 是数轴的`三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数, 的数总比 的数大。

进一步观察数轴,发现所有的负数都在“0”的 ,所有的正数都在“0”的 ,这说明什么?

正数都 0;负数都 0;正数 一切负数。

(三)自学疑难摘要:

组长检查等级:

二合作探究

1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

2.把下面各小题的数分别表示在三条数轴上:

(1)2,-1,0,+3.5

(2)-5,0,+5,15,20;

(3)-1500,-500,0,500,1000。

想想看,第(3)小题数据比较大,那怎样表示呢?

3.把下列各组数用“<”号连接起来.

(1)–10,2,–14;

(2)–100,0,0.01;

(3),–4.75,3.75。

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.判断下图中所画的数轴是否正确?

数轴教学设计 篇2

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法。

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

难点:正确理解有理数与数轴上点的对应关系。

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃)。

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

根据老师画图的`步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。

教师根据学生回答给予肯定或否定,纠正后板书。

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据。

学生活动:同桌之间、前后桌之间讨论,使学生从直观认识上升到理性认识。

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答。

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。

例1画一条数轴,并画出表示下列各数的点:

1,5,0,-2。5,

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。

例2指出数轴上a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表。

数轴教学设计 篇3

一、教材分析

本节课主要是在学生学习了有理数概念的基础上,从温度计表示“温度高低”这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学习不等式的解法、函数图象及其性质等内容的重要的基础知识。

二、教学目标

根据新课标的要求以及七年级学生的认知水平,我制定出如下的教学目标:

1.使学生理解数轴的三要素,会画数轴。

2.能将“已知的有理数在数轴上表示出来”,能说出“数轴上的已知点所表示的有理数”,理解“所有的有理数都可以用数轴上的点表示”

3.向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三、教学重点和难点:

“正确理解数轴的概念”和“有理数在数轴上的表示方法”是本节课的教学重点,“建立有理数与数轴上的点的'对应关系(数与形的结合)”是本节课的教学难点。

四、学情分析:

⑴知识掌握上,七年级学生刚刚学习正负数,对正负数概念的理解不一定很深刻,许多学生容易造成知识遗忘,可以给与适当的巩固复习。

⑵学生学习本节课的知识障碍。对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应给以深入浅出的分析。

⑶由于七年级学生的理解能力和思维特征的局限性,以及学生好动,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中,我一方面要运用直观的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

五、教学方法:

七年级学生往往对直观具体的图形很感兴趣,因此我使用了教具—温度计和多媒体辅助教学。同时教学过程中我采用“启发式教学法”和“互动式教学法”,让整节课以观察、思考、讨论的形式贯穿始终。加强师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、多交流”的合作式学习方法。教学中为学生提供更多的活动机会和空间,让学生在动脑、动手、动口的同时获得体验和发展。

为此,我设计了以下七个教学环节:

(一)温故知新,激发情趣

(二)得出定义,揭示内涵

(三)手脑并用,深入理解

(四)启发诱导,初步运用

(五)反馈矫正,注重参与

(六)归纳小结,强化思想

(七)布置作业,引导预习

六、教学程序设计:

下面是教学过程的具体设计-------------

(一)温故知新,激发兴趣:

首先复习:有理数包括那些数?

学生回答后让大家思考:你能说出一些用刻度表示这些数的例子吗?

(学生会举出很多例子),但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计(展示准备好的教具),并提问:

(1)零上5°C用5表示。

(2)零下10°C用-10表示。

(3)0°C用0表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:“数轴”。结合实例,使学生体会到数学来源于现实生活,从而对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二)得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”

通过小组交流得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

(三)手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

(1)------(8)

(3)(6)(7)三个图形从数轴的三要素出发,学生可能出现错误判断,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

(四)启发诱导,初步运用:

有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

安排课本30页的例1,利用黑板上的例题图形让学生来操作,教师提出要求:

1、要把点标在线上2、要把数标在点的上方

通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

当然,此题还可以再说出几个有理数让学生去标出点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

(五)反馈矫正,注重参与:

为巩固本节的教学重点让学生独立完成:

1、课本30页练习1、2

2、课本30页3题(给全体学生以示范性让一个同学板书)。

为向学生进一步渗透数形结合的思想让学生讨论:

(六)归纳小结,强化思想:(我采用引导式小结)

1、为了巩固本节课的重点,提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

数轴教学设计 篇4

一、教学目标

通过与温度计的类比认识数轴,会用数轴上的点表示有理数、

二、教法设计

比较法、讨论法、观察法、投影演示法、

三、教学重点和难点

会用数轴上的点表示有理数,把有理数用数轴上的点表示、

四、师生互动活动设计

创设情景,观察猜想,举例论证

五、教学思路

(一)、创设情景、引导学生通过观察温度计、体会用直线上的点来示有理数的方法,导入课题

1、展示不同读数的温度计,先让学生读出各个温度计的数后,提问:你能指用直线上的点来表示有理数吗?

同学讨论、交流,最后教师边板书边讲述:画一条水平直线,在直线上取一点O(叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,得到数轴、(导入新课)

2、数轴与温度计作类比,让学生亲自操作实践、

(真像一个平放的温度计)

+3用数轴上位于原点右边3个单位的点表示,-4用数轴上位于原点左边4个单位的`点表示,原点右边个单位的点表示( ),原点左边1.5个单位的点表示(-1.5)、

(二)、投影出示例1、例2,让学生独立完成,教师总结

例1?指出数轴上已知点所表示的数是由“形”到“数”的思维过程、例1让学生口答。

例2?把给定的数用数轴上的点表示,是由“数”到“形”的思维过程、例2让学生动手填在数轴上。

(三)、想一想,促进学生之间合作在流

1、投影片上打出问题,小组讨论,发展学生的思维空间。

由小组代表发言,不同意见由其他小组代表阐述,给予同学肯定、鼓励。

2、师生共同总结数轴的概念,以及各类数在数轴的位置关系。

六、小结

同学们你们学会了什么呢?

1、认识了数轴。

2、用数标出数轴上的点,并会用数轴上的点表示数。

七、作业布置

课本习题2.2中l-4题

自我评价

本教案的设计有以下特点:

能根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受数轴。

有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现的。

教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。

数轴教学设计 篇5

一、教学目标

1、知识与能力:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;通过分组动手操作实践,体会数学充满探索性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

二、教学重点:

数轴和相反数的概念及用数轴上的点表示有理数

三、教学难点:

数轴的概念和相反数反映在数轴上的性质

四、教学设计

(一)创设情境,引出课题

教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:

(1)温度计上的刻度是怎样表示温度的?

(2)把温度计横放(零上温度向右),你觉得它像什么?

(3)你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

(借助于温度计,用类比的数学思想方法,使学生易于接受数轴。感受到数学是真实的、亲切的。这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。)

(二)合作讨论,探究新知

1、动手操作:师生一起画一条数轴。

[讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。]

2、观察数轴有什么特征?(让学生讨论)

(如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。)

3、考考你:下面图形是数轴的是( )

(A) (B)

(C) (D)

(通过判断,加深对数轴概念的理解,掌握正确的画法。)

4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?

(引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。)

(通过设置问题串,使学生了解知识的产生过程,培养学生分析、归纳的能力,实现从实践到理论的提高。)

(三)解释应用,体验成功

1、例题教学

例1 指出数轴上A、B、C、D各点表示什么数?

(合作交流,获取正确答案)

(指出数轴上已知点所表示的数,是由“形”到“数”的过程。)

例2画出数轴,并用数轴上的点表示下列各数:

4,-5,0,5,-4,-

(动手操作,体验数学活动充满探索。)

(把给定的数用数轴上的点表示,是“数”到“形”的思维过程。)

归纳:例1、例2,从两个侧面体现了数形结合的意思,是教学中要渗透的数学思想方法。

2.观察例2中画好的数轴,4与-4有什么相同与不同之处,与-,-5与5呢?像这样关系的两个数你还能找出多少对?

合作讨论:相同点是:它们在数轴上的'位置到原点的距离都是两个长度单位;不同点是:它们位居原点的两边。这样的数对可找出无数对,如:与-,5与-5等。

教师引导学生得出:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0。通常在一个数的前面添上“-”号,或改变符号,用这个新数表示原数的相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

3、考考你:

(1)下面两个数是互为相反数的是( )

A、-与0.2 B、与-0.333

C、-2.25与2 D、π与3.14

(2)写出三对非零相反数

(四)拓展创新,巩固概念

(1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?

(分组讨论、合作交流、获得数学的猜想。)

(猜想温度计上显示的温度,上边的温度总比下边的温度高,如:-5℃比-7℃温度高,所以右边的点表示的数总比左边的点表示的数大,即:-5>-7。)

(2)在数轴上距原点3个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a个单位呢?(a>0)

(学生回答,并相互补充,培养学生发散思维的能力;知道若a为有理数,则它的相反数为-a。)

(3)书上12页练习1与练习2

(五)课堂小结

通过本节课的学习,你有什么收获?

(数轴和相反数的概念,把有理数表示在数轴上,

(六)课外延伸(有兴趣的同学完成)

1、填一填:

右面是一个正方体纸盒的展开图,请把-10、7、10、-2、-7、2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两上数互为相反数。

(课外同学之间讨论,尝试不同的填法,并用模型检验结果的正确性,本题要求学生有一定的空间想象力,将“数”和“形”有关内容有机地结合起来。)

2、想一想:某人在A地向东走10米,然后折回向西走3米,又折回向东走6米,问此人在A地哪个方向?距离为多少?答:此人在A地正东方向,距离A地13米。

(可借助于数轴求解,把实际问题转化为数学模型,以A为原点,向东为正建立模型,实际行走的路线为A→B→C→D。)

向东走10米

-2 -1 0 1 2

1 2 3

-2 -1 0 1 2

-3-2 -1 0 1 2 3

-2 -1 0 1 2

A D C B

· · · ·

-2 0 2 4 6 8 10 12

A C B D

? ? ? ?

数轴教学设计 篇6

一、学习目标:

1、什么是数轴?数轴上的点和有理数的对应关系?

2、你会用数轴上的点表示给定的有理数吗?会根据数轴上的点读出所表示的有理数吗?

二、学习重点:

会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

三、学习难点:

利用数轴比较有理数的大小

四、学习过程:

(一)自主学习课本,回答问题:

1、像这样规定了、和的直线叫做数轴

2、数轴与温度计作类比,真像一个平放的________+3用数轴上位于原点___边___个单位的点表示,-4用数轴上位于原点___边___个单位的点表示,原点右边个单位的点表示____,原点左边1.5个单位的点表示_____.

(二)精讲点拨

1、完成例1

2、请画一条数轴表示下列有理数:+4,-1/2,1/2,-1.25,-4,0。

3、完成第10页第1、2题.

(三)、寻找规律,探究新知

1.观察以上数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2.在数轴上,表示4与-4的点到原点的距离各是多少?表示-1/2与1/2的点到原点的距离各是多少?由此你又有什么发现?

3.什么是绝对值?绝对值怎么表示?

(四)、巩固练习:

1.完成课本第11页练习1、2、3两题

2.在数轴上,表示数-3、2.6、+2、0、-1的点中,在原点左边的点有个。

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

3.与原点距离等于4的点有个?其表示的数是。

4.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。

5.在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()

A.-5,B.-4C.-3D.-2

6.你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

五、谈谈你这堂课的学习体会

六、课后作业:

1、在数轴上表示-4的.点位于原点的___边,与原点的距离是___个单位长度。

2、在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是

3、数轴上与原点距离是5的点有___个,表示的数是___。

4、从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是____,再向右移动两个单位长度到达点C,则点C表示的数是____。

5、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是_____个单位长度

6、在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移动5个单位长度,这时P点必须向___移动___个单位到达表示-3的点

7、在数轴上表示-2的点离开原点的距离等于( )

A、2B、-2C、±2D、4

8、请画一条数轴表示下列有理数

+3,-4,-3.5,-1.25,2,0。

数轴教学设计 篇7

一、教材分析

《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、教学目标

(一)知识技能:

①了解数轴的概念,学会如何画数轴;

②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

(二)过程与方法:

①从直观认识到理性认识,从而建立数轴概念。

②通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

(三)情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

三、重难点

重点:正确理解数轴的概念和有理数在数轴上的表示方法。

难点:建立有理数与数轴上的点的对应关系(数与形的结合)。

四、教学教法

教法:启发式教学法和师生互动式教学模式。

学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

五、教学过程

(一)创设情景引入课题

1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

①零上5℃怎样表示?

②零下10℃怎样表示?

③0℃怎样表示?

2、画情境图,体会方向与距离

在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(二)得出定义揭示内涵

1、提问,到底什么是数轴?如何画数轴?

2、丰富数轴的'内涵:分数和小数在数上怎么表示?

3、观察数轴上的有理数排列的大小?

4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

表示3的点在原点的___边,距原点的距离是______。 小结

①位于数轴左(下)边的数总比右(上)边的数小。

②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的

距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

(三)手脑并用深入理解

1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

2、画数轴并表示出下列有理数,—2,2,0,3、指出数轴上A、B、C、D、E点分别表示什么数?

(四)归纳总结强化思想

1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

(五)分层作业强化思想

1、教材第12页第

1、2题。

2、补充练习。

⑴画一条数轴,并表示出如下各点:±,±,±。

⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出—5和+5之间的所有整数。

3、思考练习

在数轴上能否实际画出表示一千分之一的点?这个点存在吗?