返回首页
文学网 > 短文 > 教学教案 > 正文

《解决问题的策略》教案

2025/10/05教学教案

文学网整理的《解决问题的策略》教案(精选8篇),供大家参考,希望能给您提供帮助。

《解决问题的策略》教案 篇1

教学内容:

教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

教学目标:

1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

教学过程:

一、学习例1

1.呈现问题。

(1)}出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

(2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

(3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

2.解决问题。

(1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

(2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

(3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

(4)学生画图后,组织展示、交流,并相机呈现教材提供的第二组示意图。

引导学生认识到“再倒回去”后,甲杯在200毫升的基础上,增加了40毫升;乙杯在200毫升的基础上,减少了40毫升。

(5)小结:看来“再倒回去”是个好办法,用这个办法我们很容易就能想到原来两个杯子里各有多少毫升果汁。

3.填表回顾,加深对“倒过来推想”的体验。

(I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的.每个数据各是怎样推算出来的。

(2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

学生讨论后,揭示课题并板书:解决问题的策略。

二、学习例2

1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

2.在学生讨论后,指出:可以按题意摘录条件进行整理。出示下图:

原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

学生尝试画出倒推的示意图后,出示下图:

原有?张←一一 去掉收集的24张←一一 跟小军要回30张←一一 还剩52张

要求根据上图写出倒推后每一步的结果,再让学生综合“倒过来推想”的过程列式解答。

4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

三、应用巩固

出示“练一练”,学生各自读题。

提问:你打算运用什么样的策略解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种说法表示这样的意思吗?

学生解题后,组织交流,重点让学生说说推想的过程。

四、课堂作业

做练习十六的第1、2题。

五、全课小结

这节课你学会了什么?你有哪些收获和体会?

《解决问题的策略》教案 篇2

教学目标:

1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:使学生理解并运用假设的策略解决问题。

教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

教学过程:

一、直接导入:

1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的`:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。

2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。

二、以鸡兔同笼为例,探究假设

1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。

分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。

师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)

表示假设全部是兔总共有32条腿。32-22=10(条)

表示实际多画了10条腿。4-2=2(条)

表示一只兔比一只鸡多2条腿。102=5(只)

表示鸡有5只。8-5=3(只)

表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。

教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。

2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?

3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数

兔的只数

腿的条数

和22条腿比较

师根据学生的回答分别板书。

4 4 42+44=24

多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。

4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。

5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。

三、以引入题为辅,再次巩固假设法。

1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。

2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。

方法一:354=140(条) 方法二:352=70(条) 140-94=46(条) 94-70=24(条) 4-2=2(条) 4-2=2(条) 鸡 462=23(只) 兔 242=12(只) 兔 242=12(只) 鸡 462=23(只)方法三: 鸡的只数

兔的只数 18 20 23

腿的条数 17 15 12

和94条腿比较 182+174=104 多10条 202+154=100 多6条 232+124=94 正好

小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

四、以例题为练,提炼假设方法。

1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。

2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

五、总结。师:你什么收获?

《解决问题的策略》教案 篇3

【教学内容】

苏教版《实验义务教育课程标准实验教科书数学》五年级(下册)第88-89页例1、例2,完成练一练和练习十六的第1、2题。

【教学目标】

1.使学生学会运用倒推的策略寻求解决问题的思路,并能根据实际问题确定合理的解题步骤,从而有效地解决问题。

2.在解决问题的反思过程中,感受倒推的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。

3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。

【教学重点】:学会用倒推的解题策略解决实际问题。

【教学难点】:根据具体问题确定合理的解题步骤。

【教学准备】:多媒体课件。

【教学过程】

一、激活经验,感知策略

1.出示:选择其中一道进行填写,比一比,看谁做得又对又快。

① □ 7 □ 9 54

②一个数乘上4,再除以7后得12,这个数是□ 。

你选择了哪道习题?选择这道习题的原因是什么?你能发现这两个问题有什么共同的特征吗?简单说说自己的解题思路。

2.揭题:

刚才我们在选择习题时发现,第一小题比第二小题更加形象、直观,所以我们解决问题时,我们可以把题中的条件变成示意图或摘录出来,有利于减轻思维的难度(请一名学生上去演示一下化繁为简的技巧)。师利用两道题的共性引出课题策略(板书:倒过来推想)

这种从结果出发,倒过来推想的策略,在我们的生活中和数学学习中经常使用,是一种重要的解决问题的策略。今天我们这节课,就来研究这一解决问题的策略。(板书:解决问题的策略)

[设计意图:通过调动学生原有的知识尝试解决新问题的过程,唤醒学生已有经验,为倒推策略的探索提供了着力点,促进新认知的高效建构。]

二、初步体验,提炼策略

1.出示例l,提出问题。多媒体动态呈现问题(教材第88页例1)。

师:这儿有两杯果汁,从图中你可以了解到哪些数学信息?

讨论:(出示问题)

①现在的两杯果汁和原来比,发生了怎样的变化?什么变了,什么没变?结合学生回答,板书。

②知道了现在两个杯子现在的果汁数量,可以怎样球原来两个杯子中的果汁数量?可以用怎样的方法来解决?

提出问题:要求原来两杯果汁各有多少毫升?

2.解决问题

①学生自主填写课本第88页的表格。提出要求:边填边思考表格中的每个数据是怎样推算出来的。

甲杯/ml

乙杯/ml

现在

原来

②同桌交流,互相说说说说是怎么推算的。

③全班交流,反馈。

结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙杯呢?

交流:展示学生的表格,说一说想法?

追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)

3.回顾反思

师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的呢?

先独立思考,同桌交流后,集体反馈。

小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。(完成板书:原来: 倒过来想一想 现在)

小结:倒过来推想就要从现在的数量出发,根据各自发生的变化往回推算出原来的数量,也可以简称倒推的策略。(板书课题:解决问题的策略倒推)

[设计意图:通过学生熟悉的生活情境,在解决问题的过程中,激活学生思维。借助多媒体动态展示题中的信息和问题,使学生感受到这类问题的结构特征,师生在互动对话中建构数学模型。接下来通过看一看、倒一倒、填一填、算一算、说一说,学生初步学会用倒推的策略解决实际问题,体验到倒推过程与变化过程的相反性,感悟倒推的顺序,为例2多步倒推的探究过程做好了良好的心理定向和认知铺垫。]

1.探索例2

出示例2:(教材第89页)

师:哪位同学来读读上面的信息?

师:学习了例1后,同学们都信心十足,能自己独立解决这个问题吗?两点学习建议。

多媒体呈现:

①你能把题目中的条件和问题摘录下来进行整理吗?

②你准备用什么策略解决这个问题?在小组内交流想法,列式并解答。

2、学生独立思考,小组交流,解决问题,教师巡视指导。

3.集体交流反馈。

谈话:谁愿意把你们小组的想法和大家一起来分享的?

学生展示自己的作业纸,说一说想法。

追问:要求小明原来有多少张邮票,你们是用什么策略想这个问题的昵?

结合学生的.展示引导学生列式。

学生可能出现的情况:

第一种:

52+30-24=58(张)

师:先倒推哪一步?再倒推到哪一步?倒推时的过程与原来的变化过程相反吗?

第二种:

52+(30-24)=58(张)

师:原来这两个变化的过程可以合二为一吗?现在比原来少6张,现在有52张,把这少的6张补起来就可以得出原来的张数了,52加6的过程;是不是用的倒推法。我们把它变成了一步倒推的题目了。

3.检验。

我们用不同的方法求出小明原有58张,结果是否正确该如何验证呢?

在学生交流的基础上让学生检验。

[设计意图:给学生提出学习建议,让学生主动探索,深化理解倒推的策略。学生在自主探索的过程中,因为思维的深度参与,必然决定了学生对获得策略过程的经历是深刻的。在汇报交流中,对两种方法的比较,体会到倒推不是解决问题的唯一策略,但却是一种重要的思想方法。检验答案是否正确,再次让学生体验事情的变化是有顺序的,从而感悟到有条理的思考是很重要的先让学生用自己喜欢的方法整理信息,再启发学生逆向推想,突出倒推的思路。]

四、应用巩固,深化理解

1.纸牌还原游戏(先用文字出现,学生熟练后师口头说,学生还原):

师:我国著名数学家吴文俊先生曾说过数学好玩,如果我这有4张纸牌,按照一定的顺序操作:把四张纸牌排成一行,将第1张和第3张交换位置,再将第2张和第4张交换,翻开看到的结果。这四张牌原来是怎样放的呢?

2.完成练一练

引导:如果你是小军,会怎样拿出画片的一半多1张?

学生独立完成后组织交流。

3.哪几道题选用倒推的策略解答?请你列出算式。

(1)方方和元元原来共有60张画片,方方给了元元5张画片后,两人的画片同样多。原来两人各有多少张画片?

(2)小明今天带了12元钱去学校,买了一支钢笔用去5元,小红又还给他4元,小明身上还有多少钱?

(3)一辆公共汽车从澄中开往青少年活动,经过瑞佳广场站时,下来了14人,又上去了10人,现在车上有乘客44人,你知道车上原来有多少名乘客吗?

五、回顾反思,拓展延伸

今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以李白喝酒为题材编了一道算题:

李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?(灵活调度,如果时间不允许,留置课外思考)

师:你认为什么样的情况适合用倒推的策略来解决问题呢?怎样运用呢?

小结:如果某种数量经过一系列变化后,已经知道了现在的结果,要求原来的数量,就可以用倒推的策略。先从结果出发,一步一步往前倒推,直至求出答案。在倒推的时候要注意变化顺序。(板书:变化顺序)

六、课外书面作业:完成练习十六第1、2题。

[设计意图:在解决问题后,对解题的过程和策略进行反思,使学生认识到是如何运用倒推的策略来分析并解决具体问题的,体会到倒推策略的问题特点,从而建构倒推策略的模型,由感性认识上升到理性认识。课后的拓展延伸,使学生感知倒推的策略在生活中的价值,同时润物无声地渗透思想教育,激发学生课后探究的浓厚兴趣。]

《解决问题的策略》教案 篇4

教学目标:

1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。

2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。

3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。

教学难点让学生体会用画图的策略解决问题的.价值,逐步形成解决问题的策略。

教学准备:

教学过程:

一、知识再现

1.提出问题:

(1)同学们,上节课我们又掌握了一种解决问题的策略,它是什么呢?

(2)我们通过画什么样的图来分析问题?

(3)运用画图的策略来解决问题有什么好处呢?

2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的价值。(板书课题)

二、基本练习 画线段图解决问题。

1.完成教材第52页“练习八”第4题。

让学生独立画出线段图。

2.完成教材第53页“练习八”第10题。

让学生根据题目中的信息将教材上的线段图补充完整。

这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。

教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?

引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。

让学生独立解答,组织汇报。

3.完成教材第54页“练习八”第11题。

组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。

三、综合练习

用画示意图的策略解决问题。

1.完成教材第53页“练习八”第8题。

这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:

然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。

2.完成教材第54页“练习八”第13题。

让学生在图上画一画,将长方形扩大成正方形。

3.完成教材第52~54页“练习八”其余习题。

学生独立完成。

四、反思总结 通过本课的学习,你有什么收获? 还有哪些疑问?

五、课堂作业 《补》

《解决问题的策略》教案 篇5

本单元教学用替换的方法解决实际问题。替即替代,换则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材在编写上有以下特点。

第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在你知道吗里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。

第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次练一练都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里说说为什么这样替换说说解决这个问题的策略,例2里你准备怎样来解决这个问题,都是着眼于体会数学思想,积累数学方法,感受解题策略。

一、 直观的情境引发替换。

例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生说说为什么这样替换,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

教材让学生列式解答,把替换的思考和方法用算式表示出来。部分学生可能会有困难,他们或者列算式7203=240(毫升),先算1个大杯的容量,或者列算式7209=80(毫升),先算1个小杯的容量。教学应指导学生在这两道算式的前面,先写出63+1=3(个)或者6+3=9(个),用算式表达自己的替换。也通过这样的算式,使替换时的思考数学化、模型化。

检验结果要抓住两点进行: 一是果汁总量720毫升,二是小杯的容量是大杯的1/3,只有同时满足这两个关系的答案才是正确答案。教材把检验安排在写答句的前面,有两层意思:一层是先经过检验确认结果,再写出答句是解决问题的程序,也是良好的习惯。另一层是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的`精神,是教学应该倡导和培养的。

第90页练一练仍然用图画配合文字呈现问题情境,有助于学生进行替换。通过两个大卡通的提问,指导学生开展替换活动。每个大盒比小盒多装8个球,如果把2个大盒替换成2个小盒,会少装82=16(个)球,7个小盒一共装100-16=84(个)球。如果把5个小盒都替换成大盒,会多装85=40(个)球,7个大盒一共装100+40=140(个)球。学生看着示意图,容易理清这些变化。例1和练一练都有不同解法,这是由于替换策略有不同的具体应用。教材希望学生理解各种解法,体会应用策略的灵活性,但不要求他们一题多解。

二、 用多种形式解决问题突出替换策略。

例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。你准备怎样来解决这个问题不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如猴子卡通用画图的方法,兔子卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。

猴子卡通画了10只船,每只船上画5个圆表示乘坐5人,先假设乘的都是大船,这些船一共可以坐50人,比实际多8人。于是从一只船上去掉2人,把这只大船换成小船;又从另一只船上去掉2人,也用小船替换大船照这样替换4次,6只大船和4只小船一共乘42人,和全班人数相同,得到了问题的答案。兔子卡通先假设乘了5只大船和5只小船,这些船一共可以乘40人,比全班人数少2人。为了让这2人也乘船,所以把其中1只小船换成大船,得到的答案也是租用6只大船、4只小船。

教材把替换留给学生进行。用猴子卡通的方法,可以在图画里划去一些圆,表示减少乘坐的人数,把大船换成了小船。教学时要让学生知道在一只船上只能而且必须同时划去2个圆,体会每划去2个圆就是进行了一次替换。用兔子卡通的方法,教材里有一张表格,里面填了兔子卡通的假设,空格是让学生替换时用的。要注意的是,教材没有要求学生列式计算。这里有两个原因:一是解决实际问题未必都要列式计算,画图和列表也是解题的形式。教学要鼓励解题形式多样化,发展个性和创造性。二是像例2这样的题算式比较难列,如果列式计算,不仅增加了教学的困难,而且会弱化替换活动,挫伤学生学习的积极性。

仅从表面看,两个卡通的解法是不同的。其实都应用了替换策略,都是先提出一个假设,再通过替换进行大船与小船的调整,逐渐逼近,直至获得准确结果。可见,例2应用替换策略的水平,比例1高了一个台阶。教材要学生研究两种方法的共同特点,就是要体会上述的替换策略。

在猴子兔子卡通的启发下,学生一定会提出其他的假设,如假设10只都是小船,假设1只大船和9只小船并希望按自己的假设画图或列表解答这个问题,甚至少数学生还会想到别的解题形式。教材满足学生的需要,让他们在小组里交流还可以用什么方法找出答案,再次经历解决问题的过程。比比各种假设进行的替换和次数,感受怎样假设能较快地解决问题,进一步体验替换思想和方法。

第92页的练一练安排两道题,仍然体现解决问题形式的多样和灵活。第1题适宜用画图方法解答,分三步指导学生画图。关键是理解给其中几只动物添2条腿的原因,以及给一个动物添2条腿后它成了什么动物,也就是要体会画图时的替换。第2题适宜列表解答,关键是看懂表格里的三点内容:一是开始时怎样假设两种展板块数的?二是用哪种展板替换哪种展板?什么原因?三是为什么一下子就用3块大展板替换3块小展板?明白了这几点,就知道接着该怎样替换,以及如何较快地得出结果。

《解决问题的策略》教案 篇6

一、课前游戏:

文字游戏——说反话、做动作

左、加法、乘法、上来、买进、给你、送出去、往南

二、导入新课:

1、快速抢答:

课件出示:

(1)我送给小红4张邮票,现在我有12张,我原来有( )张邮票。

(2)一杯果汁再倒入40毫升后是200毫升,原来这杯果汁有( )毫升。

(3)把甲杯里40毫升果汁倒给乙杯后,现在甲杯有100毫升,甲杯原来有( )毫升。

同学们,你们为什么答得那么快呀?你能选一个说说你是怎么想的吗?你发现这几个题目有什么共同点吗?

引导学生说出这几题都是已知现在,求原来。我们可以怎么想呢?相机板书:

原来 倒过来 现在

2、课件出示逆运算题:( ) ( ) (20)

师:你能挑战一下这一题吗?

学生试答,让他们说说自己是怎样想的?

引出倒过来推算

师:算出来的得数10对不对?我们有什么办法证明?

生:顺着计算一遍。

引导学生口头验算结果,然后回答第2小题。

( ) ( ) (54)

3、小结。

师:今天我们要学习的策略就是……?

生答师板书:倒推

三、教学例题:

(一)、教学例

1,学会基本的倒推思想。

1、课件逐步出示例1情境图,生观察,并相机阅读条件和问题。

师:你准备用什么策略来解决这个问题?(生自由汇报)

师:你准备先从哪个条件入手解决这个问题?(生汇报)

师:你准备怎么解决这个问题?(生自由汇报思考过程)

2、画杯子图倒过来分析证明。(课件画图演示过程)

3、填表分析。

师:现在甲杯和乙杯各有多少毫升?你是怎么想的?原来甲杯和乙杯各有多少?你又是怎么想的?

4、列式计算。

师:你准备怎么列式计算?先算什么?再算什么?

板书: 400÷2=200(毫升)

甲杯 200+40=240(毫升)

乙杯 400-240=160(毫升)

师:为什么先算400除以2得到200,第二步为什么用200加40?算乙杯除了可以用400减去240,还可以怎样想?(板书:或200—40=160)

5、学生检验。

师:这个答案对不对,咱们想个办法证明一下。

6、师:同桌说说解决这道题目的策略。(学生小组交流)

7、出示练习十六第1题。(设计情境,收集上海世博会纪念卡)

师:你准备怎样解决这个问题,用怎样的'策略?

学生根据题目中的条件信息,独立列式解答,教师巡视,注意后进生的答题情况,再汇报交流思考过程。

师:第一步用60除以2算的是什么?根据什么条件这样算的?(生答)

统计正确率,表扬与鼓励同步。

师:有些题目在解答之前,我们可以先把重要的信息先整理出来。

(二)、教学例2,学习如何收集、整理信息,再倒过来推想。

1、课件播放例题2。

读题,出示学习建议。

学生同桌合作学习,教师巡视,挑选代表性作业实物投影交流。

生汇报倒过来推想的策略,教师小结:

课件倒过来逐个出示:

探索简便思考过程

师:我们也可以像上课开始做的那道逆运算题目一样,把题目简单化。

课件出示:( ) ( ) (52)

师:你会倒过来推算吗?(生口答)

2、列式计算:

师:先在小组里说说自己的想法,再列式解答。

生答师板书方法一:52+30-24=58(张)

师:还有什么思考方法可以找出答案?

师:又收集的比送给小军的少6张,现在比原来就怎么样?

生答师板书方法二:30-24+52=58(张)

3、验算证明:

师:根据求出的答案,再顺推过去,看看剩下的是不是52张?

生口头检验。(58加收集的24张就有82张,送给小军30张减去30就还剩52张)

4、小结:

师:不管用哪种计算方法,咱们在解题之前的思考过程都用到了什么策略?

生:倒过来推想的策略

师:看来,倒过来推想的策略还真的很重要呢!

(三)、教学练一练题型,理解“一半多一些”题目的思考策略。

1、课件播放练一练题目。

(1)学生自由读题,说说通过读题,哪些地方有疑惑?

预设:学生会说出“一半多一张”不太明白,教师提示:你能用两个动作来解释一下这句话吗?提供一叠画片,操作演示,帮助学生分析理解。

结合学生的理解,逐步出示题目的变化信息,引导学生用简单的箭头图来表达。

(2)师:根据摘录整理到的信息,你会倒过来推想吗?

生汇报倒过来思考的过程,师相机课件出示。

(3)师:根据这种倒过来推想的方法,你会列式计算吗?

生独立列式解答,再汇报交流思考过程。

(4)检验答案。

四、巩固应用

1、选一选:出示小刚买一个铅笔盒用去所带钱的一半,买一本笔记本又用去2元,这时还剩16元,小刚原来带了( )钱。(此题的安排目的主要是让学生能够巩固对“一半”题目类型的理解,并引导学生做选择题的方法还可以用答案代入法,其实也体现了学生的检验过程和与顺推思路的比较。)

2、估一估、比一比:设计去苏州乘火车到上海参观世博会情境题,一种情况是家中8:20出发,到达苏州火车站约什么时刻?另一种情况是火车发车时间为8:20,从家到常熟客运站30分钟,再到苏州汽车站为1小时,从汽车站到火车站还需5分钟,为了不误车,最迟什么时候从家中出发?(让学生通过比较,进一步理解什么情况下适合用倒推策略来解决实际问题)

五、总结谈话:

今天你有什么收获?

六、思维拓展:

1、我来吟诗:古人用倒推作诗

2、尝试做思考题“李白喝酒”。随音乐出示题目,教师先进行分析题意。

借助箭头变化图帮助学生理解,让学生用今天所学的策略尝试解决。

生课后讨论交流,然后汇报交流。夺取智慧星。

《解决问题的策略》教案 篇7

教材分析:

《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

设计理念:

优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

教学目标:

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

教学案例:

一、创设情境,学习新知

1、预设情景

师:同学们,在节假里你家来了客人你准备做什么呢?

师:星期天的`上午李阿姨到小明家来做客。

师:从图。.能得到哪些信息?

生:小明的妈妈让小明给李阿姨沏茶。

师:想一想你平时在家沏茶时要做什么呢?师:你们要做这么多事,是吧!那我们来看一看小明沏茶都需要做那些事?分别需要多长时间?谁来说给大家听一听?

2、自主设计方案师:小明需要做这么多事情,那么请你帮小明想一想,他应该先做什么?再做什么?怎样才能尽快让客人喝上茶?用你们课前准备的工艺图片摆一摆,设计一个最佳方案,并算一算需要多长时间?

3、展示学生不同的方案师:谁愿意上讲台来展示你的设计方案?

师:刚才同学们帮小明设计的沏茶的方案是通过同时做几件事情才节省了时间,在烧水的同时做洗茶杯和找茶叶这两件事,也就是说洗茶杯和找茶叶共花得分钟时间可以在烧水的8分钟之内完成。

这样小明就可以在8分钟以内完成需要11分钟才完成的事情,也就让客人尽快地喝茶了。

4、小结师:我们在做一些事情时,应先确定好做事的先后顺序,然后在有效的时间内尽可能多同时做几件事,能同时做的事情越多,所用的时间就越短。

李阿姨喝完茶想走了,但小明是非常好客的好孩子,非要李阿姨留下不可,(点击多媒体)我们来看一看到底是为什么呢?

二、再探新知

师:原来小明的妈妈要用最拿手的烙饼来招待客人。从图。

能得到哪些信息?(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。

利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)

1、学生观察、理解图中的内容。

教师提问:“烙一张饼需要几分钟?“ “烙两张饼呢?” “爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “一共要烙3张饼,怎样烙花费的时间最少?” 2、学生拿出准备好的圆片,圆片的正、反面上分别写上正、反两字来代表饼的正、反面。每烙完一面,就让学生在这一面上用铅笔做上记号。

先让学生试一试,思考烙3张饼,怎样才能使花费的时间最少,然后分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间,并把自己的实践结果记录在老师发的表格中,教师参与到小组活动中。(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)

3、展示学生的方案。

教师:“谁来给大家说一说,你们小组设计的方案是什么?”在展示台上投影学生填写的表格。

小组代表来根据表格叙述设计方案,并用图片来演示。几个小组演示完毕后,教师让大家来比较。

“这些方案,哪一种能让大家尽快地吃上饼?”(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、拓展延伸:

教师:刚才我们一起找到了烙3张饼的最佳方法。请大家想一想,如果要烙4张饼,怎样烙才能尽快吃上饼呢?”小组活动,并用表格记录。

小组代表发言。班内交流,并比较哪个小组的方法最好。

教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?”小组活动,进行记录。通过小组交流,使学生找到最佳方法。

(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)教师:“如果要烙6张饼、7张饼……10张饼,怎样安排最节省时间?”小组讨论交流,说一说自己的发现。

学生在充分交流探讨的基础上,得出结论:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张饼按上面的最佳方法烙,最节省时间。让学生仔细观察表格,看发现了什么?得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。

教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”呢?假如妈妈使用了新式电饼。

《解决问题的策略》教案 篇8

一、教学目标

【知识与技能】

理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。

【过程与方法】

通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。

【情感、态度与价值观】

在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。

二、教学重难点

【重点】用转化策略比较不规则图形的面积。

【难点】转化的方法及应用。

三、教学过程

(一)导入新课

大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。

教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。

引出课题——解决问题的策略。

(二)讲解新知

1。问题探究

大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?

学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。

学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。

教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。

教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。

2。方法总结

教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。

教师总结学生回答:

(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的'大小不变;

(2)图形转化可通过平移、旋转、翻折、拼接等方法;

(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。

教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。

教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。

(三)课堂练习

算一算下列三个图形中阴影部分面积占整个面积的几分之几。

(四)小结作业

小结:总结本节课学习内容。

作业:课后练一练。