返回首页
文学网 > 短文 > 教学教案 > 正文

交换律教学反思

2025/10/09教学教案

文学网整理的交换律教学反思(精选8篇),供大家参考,希望能给您提供帮助。

交换律教学反思 篇1

“乘法交换律”,初看教材我感觉内容比较简单例如3*4=4*3、15*6=6*15等,相信学生很容易理解。于是我就很草率地处理了本节课的内容(我先举几个两个数相乘的例子,再请学生口算,再交换两个因数的位置请学生口算,然后请学生说一说你发现了什么规律,最后就放手让学生尝试练习)。第一节课后,我随手拿起几本学生作业本检查质量,没想到学生的作业中竟然有许多问题。如:112/28与28/112,58—47与47—58是否相等等连线题。学生竟然把它们用线连了起来表示相等,我十分惊讶。难道说他们(就连优秀生也不例外)不懂吗(算一算不就知道了吗)?事后,我仔细反思这节课。在上第二节课时我对这一节课做了很大的.改动:课一开始我先请学生举例两个数相加并交换它们的位置算一算发现和不变,用以前学过的加法交换律引入,然后让大家一起来总结刚才是如何学习得到加法交换律的方法。在此基础上我让学生想一想在乘法、除法、减法中会不会也有这种规律呢?接着我就让学生进行小组合作来探讨验证,最后请学生汇报。学生很自然而然地就得到了乘法中有交换律,而在除法和减法中却没有这种交换规律。学生学习的知识结构完整了。

通过这两节课的对比,可以看出只有从学生已有的知识经验水平出发,通过猜想、验证、观察、交流、归纳、亲自经历发现问题、提出问题、解决问题,从中体验成功或失败的情感,才能加深对知识的理解,培养学生的学习能力。另外我还深刻地认识到我们的学生在接受新知识的时候往往是停留在表面化的,极容易把知识延伸开去(如加法有交换律,就容易迁移到乘法、减法、除法也有此规律)。所以我们教师应从知识整体出发,站在学生的角度充分考虑学生已有知识水平及他们学习新知识时的方式方法。充分发挥教材的深意,使知识更趋完善,结构完整化。

交换律教学反思 篇2

一、导入部分

上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。

反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。

二、探究规律

在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的`规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。

反思:教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。

总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。

1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。

2、对“关注每一位学生”这个问题,没有做到。

交换律教学反思 篇3

一、情境引入。

师:我们班有男生27人,女生31人,班上一共有多少人?

生:27+31=58人

师:我还有一种不一样的方法,你知道吗?

生:我猜是:31+27=58人

师:请你们观察一下这两个算式有什么共同点,什么不同?

生:计算的都是总人数。

生:两个加数都相同。

生:和也相等。

生:两个加数交换了位置。

师:既然两道算式的和相等,27+31和31+27中间可以用什么符号连接?

生:等号。

生(惊喜地):是加(减)法的交换律。

生:是加法的交换律。

师板书:加(减)法的交换律。

二、反复例证,充分感知交换律。

师:你认为加法交换律是什么样子的?

生:交换两个加数的位置,和不变。

师:所有的加法算式都是这样吗?

生:是的。

师:口说无凭,你能举例子说明吗?

师:你认为这样的例子多不多?

生:很多,都举不完。

师:你认为怎样举例最好?

生:一组一组地写。

生:你写的完吗?

生:我举有代表性的例子。

师:什么样的例子有代表性?

生:一位数举一个,两位数举一个……

生:还要考虑0的情况。

生:再举几个和0有关的例子。

生:我认为如果能找到了一个反例,就说明不是所有的加法算式都有加法交换律(加法交换律不成立),我准备找反例。

生举例:9+8=8+9

12+26=26+12

……

0++=0+0

0+7=7+0

……

0.9+0=0+0.9

师:这个例子和你们举的例子有点不一样。

生:它的加数是0。

生:上面几道算式的加数也是0。

生:0.9是小数。

师:同学们举得例子真不少,不仅想到了整数,还想到了小数,这些例子说明了什么?

生:交换两个加数的位置和不变。

师:有同学找到反例吗?

生:找不到。

生:减法不行,2-1不等于1-2。

生:减法也有行的:2-2=2-2。

生:只要有一个反例,就不行。

师:交换律在减法中成立吗?

生:不成立(师擦去减)

生:乘法、除法行。

师:真的吗?

生:5*4=4*5

生:也有不行的(不成立)。

师:现在请你们举例,认为行的就找行的,认为不行的就找反例。

(因为有了加法的基础,学生举例的.方法都不错)

生:我认为行的:36*24=24*36

生:我认为不行:25*24不等于24*25

生:不对,

师:请你们帮助解决一下。

生:25*24=600,24*25=600

生:我认为行:0*396=396*0

生:我认为不行:25*4不等于5*24

生:例子不对,是因数交换位置,又不是两个数交换位置。

生:25*4=4*25

生:不计算也可以知道他们的积相等,25*4表示4个25相加,4*25也可以表示4个25相加。

师:真不错,她从乘法的意义来说明两个乘法算式的积相等。

生:加法也是这样,虽然交换了两个加数的位置,但两个加数没有变,和也不会变。

……

生:除法不行:6/3不等于3/6

生:除法也有行的:8/8=8/8

生:只要有一个不行,就不成立。

师:通过刚才的举例,你认为交换律在哪些运算中成立?

生:加法和乘法。

师:你能完整地表述加法和乘法的交换律吗?

生:交换两个加数的位置,和不变。

生:交换两个因数的位置,和不变。

师板书

师:你觉得老师写这两句话,难不难写?

生:难写。

师:你能不能想一个简单的写法,帮帮我。

生思考,并尝试写,有些小组小声地讨论起来。

生:甲数+乙数=乙数+甲数

生:苹果+香蕉=香蕉+苹果

生:a+b=b+a

……

紧接着,学生们也分别用文字、图形、字母表示了乘法交换律。

师:这里的符号可以代表哪些数?比如a和b?

生:代表0、1、2、3、4……

生:代表1000、10000……

生:代表任何数。

师:你能完整地说一说加法和乘法交换律吗?

生:交换任何两个加数的位置,和不变。

生:交换任何两个因数的位置,和不变。

生:可以合成一句话:交换任意两个加数(因数)的位置,和(积)不变。

三、运用中升华认识。

师:学习加法、乘法交换律有什么作用,过去我们用过吗?

生:在二年级学过,看一幅图写两个加法算式。

生:一句乘法口诀可以计算两道乘法算式。

生:验算时用过。

生:加法可以用交换两个加数的位置来验算,乘法也可以。

紧接着,学生完成相应的练习。

交换律教学反思 篇4

在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

成功之处:

1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的.教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

不足之处:

习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

再教设计:

1、注重习题的备课,减少低效教学流程。

2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

交换律教学反思 篇5

本节课是在学生学习过加法的运算定律之后学习的。只学习乘法交换律,内容比较简单。在设计这节课时,力求让学生通过自己的观察、分析,发现这一运算定律,呈现“观察 - 初步结论 - 验证 - 应用”的研究程序。体现在以下几个方面:

一、把主动权交给学生

学习的主体是学生,让他们观察,让他们提问,让他们选择问题进行解决,引导他们发现规律、验证规律,给规律命名、用自己的方法表示乘法交换律,应用交换律解决问题 …… 让学生在自主学习,自主探究中经历获取知识的过程,体验着发现的快乐。

二、注重思想和方法的渗透

学生学习数学不只是简单的计算几道题。知道几个数的概念,而是学会用数学的思想去思考,用数学的`方法去解决一些实际的问题。因此本节课注重对数学思想和方法的渗透,整节课紧紧围绕“乘法交换律”让学生在“观察、验证、应用”的活动中,学会有序的思考,经历归纳总结的过程。在学生的学习交流的过程中,让学生学会了如何观察,如何验证,如何思考。

。只学习乘法交换律,内容比较简单。在设计这节课时,力求让学生通过自己的观察、分析,发现这一运算定律,呈现“观察-初步结论-验证-应用”的研究程序。体现在以下几个方面:

一、把主动权交给学生

学习的主体是学生,让他们观察,让他们提问,让他们选择问题进行解决,引导他们发现规律、验证规律,给规律命名、用自己的方法表示乘法交换律,应用交换律解决问题……让学生在自主学习,自主探究中经历获取知识的过程,体验着发现的快乐。

二、注重思想和方法的渗透

学生学习数学不只是简单的计算几道题。知道几个数的概念,而是学会用数学的思想去思考,用数学的方法去解决一些实际的问题。因此本节课注重对数学思想和方法的渗透,整节课紧紧围绕“乘法交换律”让学生在“观察、验证、应用”的活动中,学会有序的思考,经历归纳总结的过程。在学生的学习交流的过程中,让学生学会了如何观察,如何验证,如何思考。

交换律教学反思 篇6

这节课的教学过程我打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

1.注重教学目标的整合化。

根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课教学中,我在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的'方法,又体验了成功的情感。

2.注重教学内容的现实性。

新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

交换律教学反思 篇7

本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。

本节课的可取之处仍然是我们继续使用了小组合作的`方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。

然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。

总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的 ,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!

交换律教学反思 篇8

《加法交换律》是义务教育教科书(人教版)数学四年级下册P17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。

本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。

在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的内容,加法交换律。

在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。

在巩固练习环节,我设计了多种多样的练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。

总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的.注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。

但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。