二次根式的教学反思
文学网整理的二次根式的教学反思(精选7篇),供大家参考,希望能给您提供帮助。
二次根式的教学反思 篇1
在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,这部分教学内容是在第十二章实数的基础上,着重研究二次根式。在本章教学中,存在以下问题:
1、在教学设计中,我对学情分析不足,主要是过高估计学生的学习能力,一方面每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,另一方面对以前学过的知识的复习做的不够,导致后续的新知识的学习遇到不少麻烦。如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的`引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选择不同的运算途径等都可以让学生进行探究和归纳。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
3、在学生的学习方面,也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
二次根式的教学反思 篇2
在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,教学内容是着重研究二次根式。在本章教学中,存在以下问题:
1、在教学过程中。
仍然存在过高估计学生的学习能力,每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的.化简过程中因此而出错。
2、在二次根式的化简中。
新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在学生的学习方面。
也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
基于上面的诸多因素,我班学生在学习还不够理想,在本章单元测验中,体现高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,提高教学实效。《二次根式单元教学反思》/p><
二次根式的教学反思 篇3
本次研修我们主要研讨的是“如何以问题情境为载体提高课堂教学的有效性”。所以本节课除了创设生活情境外,最主要是设计一系列的问题串为教学情境,类比同类项、合并同类项和整式加减,通过老师的问题情境,一步步的探索发现同类二次根式的定义和二次根式加减法的法则。使学生在己有知识的基础上,自然迁移到新的知识,建立新旧知识之间的联系,形成数学知识体系。归纳起来说,就是本节课我们本着以学生为主体,以设计的问题情境为主线,运用类比的思想,并且贯穿一定量的练习,来完成本节课的`教学目标。
从实际授课来看,存在以下问题:
一、对学生可能出现的问题,备课时有预设到,但没有再进一步强化、追踪没有作到位。
例如,在什么是同类二次根式时,预设到“根指数相等”可能会有问题,出了一个选择题来巩固根指数的问题,并且第4小题也是一个根据根指数相同来完成的问题。第4小题学生完成的不好,没有从老师讲选择题时得到提示,同时如果讲完后再作一个小练习加以巩固可能会更好。
二、从加减计算来看,学生对于去括号变号、运算顺序、分数的开方掌握的不好。
这一类的运算掌握不好,导致课堂进度有点拖,以致能力提升题没有进行,“没有老底子,就没有新文章”。更要求我们对学生的计算能力要高度重视。同时也觉得自己在备课时把重点放在了前半部分,对计算题的设计没有到位,对难易的掌握不好和对学生可能出现的错误没有预设到,比如不知要合并,不知如何合并。所以最后一题小测题和学以致用第4小题换一下就更好了。
三、没有利用好课堂内生成的问题情境,对所学知识进行巩固,并完成新知识的生成。
比如:让学生举例的同类二次根式,这里有同学说了一个,我当时只是简单地想成学生化简不对。其实这里可以加个上几个例子,点出根指数的问题,这样在后面作第4小题的时候学生的难度会小一点。
今后在教学中,精心备课的同时,一定要注意学习素质以此加强自身素养,而现在的国培正是我们提高的好时机。感谢国培,加油吧!
二次根式的教学反思 篇4
通过这节课的学习,学生将掌握二次根式加减法运算法则,并发现二次根式加减法的实质就是合并被开方数相同的二次根式,这正如整式加减法的实质就是合并同类项一样,为了确认哪些被开方数完全相同,需要将二次根式化成最简二次根式,这时一定要认真细心,避免出错。
本节课是二次根式加减的第一节课,它是在二次根式的'乘除的基础上的进一步学习,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。
在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
二次根式的教学反思
作为一位优秀的老师,我们要有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编整理的二次根式的教学反思,仅供参考,希望能够帮助到大家。
二次根式的教学反思 篇5
本节课的重点是被开方数相同的二次根式与合并被开方数相同的二次根式。
这节是最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定义,同类项的定义,合并同类项的法则,为这节课的学习作好铺垫。
同类二次根式:几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式。判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化简成最简二次根式,再观察它们的被开方数是否相同。
其次,同类二次根式必须同时具备两个条件:①根指数是2次;②被开方数相同,与根式的符号和根号外面的因式没有关系。
如何判断几个二次根式是不是同类二次根式,这些题可从课后练习中选取,但要注意书写规范。示范完成后做课后随堂练习与习题中的判断是不是同类二次根式的题目,做到及时巩固。
识别同类二次根式是二次根式的加减法的前提,所以,后面的`同类二次根式的加减法就顺理成章了,也是先选一个题目进行板演示范,步骤一定要完整规范,然后就是学生进行模仿性练习,这样处理起来,学生没有困难,整节课节奏紧凑,效果显著。
学生在练习过程中存在的问题:①合并同类二次根式时,二次根式前面的字母因式不加括号,如,应该是;②二次根式的系数是带分数时,没写成假分数的形式,如,应该是。这些错误要注意引导纠正。
二次根式的教学反思 篇6
通过这节课的学习,学生将掌握二次根式加减法运算法则,并发现二次根式加减法的实质就是合并被开方数相同的二次根式,这正如整式加减法的实质就是合并同类项一样,为了确认哪些被开方数完全相同,需要将二次根式化成最简二次根式,这时一定要认真细心,避免出错。
本节课是二次根式加减的第一节课,它是在二次根式的乘除的基础上的进一步学习,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。
在理解、掌握和运用二次根式的.加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
二次根式的教学反思 篇7
在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:
1、课前没很好确定学生的基础知识情况
高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。
2、课堂没完全还给学生
预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。
3、课后练习不能真正落实
学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的'二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。
返回首页